首页> 外文OA文献 >Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)
【2h】

Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

机译:非牛顿流变学在通用流体系统仿真程序(GFSSP)中的开发和实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.
机译:该程序的目标之一是开发实验和分析/计算工具,以预测非牛顿流体通过推进系统的各个系统组件(管道,阀门,泵等)的流量。为实现此目标,我们选择了以增强NASA通用流体系统仿真程序(GFSSP)软件的功能。 GFSSP是一种通用计算机程序,旨在计算复杂流体网络中的稳态,瞬态压力和流量分布。尽管当前版本的GFSSP代码能够处理各种系统组件,但是代码中的隐含假设是系统中的流体是牛顿型的。为了将代码的功能扩展到非牛顿流体,例如硅胶凝胶化的燃料和氧化剂,已经对代码的动量方程式进行了修改。我们已经成功地在GFSSP流量方程中实现了具有幂律行为的流体。在GFSSP代码中实现幂律流体行为取决于对两个流体系数n和K的了解。确定该程序中使用的硅胶的这些参数是通过实验确定的。二氧化硅水凝胶的n和K参数是在CFDRC的特殊项目实验室中使用恒定剪切速率毛细管粘度计通过实验确定的。使用CFDRC的10加仑胶凝推进剂混合器将8:1(按重量计)的水硅胶批次混合。在测试之前,让凝胶在流变仪槽中放置至少十二小时,以确保凝胶的脆弱结构有足够的时间进行重整。在测试过程中,硅胶通过长度为3英寸,长度为1英寸至36英寸的不锈钢管加压供料和排放。 0.0237“,0.032”和0.047“。这些测试中收集的数据包括管子入口处的压力和体积流量。根据这些数据,使用非牛顿公式计算未校正的剪切速率,剪切应力,停留时间和粘度,功率定律流体在当前设置下在流变仪中获得的最大剪切速率(针对入口效应进行校正)在150,000至170,000sec。范围内,通过模拟毛细管流变仪并使用Power Law凝胶粘度的流路进行GFSSP模拟给定高质量的入口效应数据,实验数据与模拟流量曲线之间的一致性在+/- 4%之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号